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INTRODUCTION

Vector optimization theory is formed from ideas about economic equilib-

rium (1881) and value theory (1909) of Edgeworth. But since the 1950s on-

wards, after the works by Kuhn - Tucker 1951 of the equilibrium value and

Pareto optimization by Debreu (1954), vector optimization theory has been

really welcomed as a new branch of modern mathematics and has multiple

applications in practice.

Let D be a nonemptyset in space X, f : D → R be a real function. The

following minimum problems of function f in D could be seen as the central

problem in the theory of optimization: Find x̄ ∈ D such that

f (x̄) ≤ f (x) for all x ∈ D. (0.1)

Relating to this problem, we have known variational inequalities which were

initially studied by Stampacchia in 1980: Let D ⊆ Rn, G : D → Rn is a

single-valued mappings. The problem is as follows: Find x̄ ∈ D such that

〈G(x), x− x〉 ≥ 0 for all x ∈ D. (0.2)

Let T : D → X be a single-valued mapping. The fixed point problem is

formed: Find x̄ ∈ D such that

x̄ = T (x̄). (0.4)

If T is a continuous mappings and G := I − T , where I : D → D de-

notes the identity mapping, then the fixed point problem (0.4) is equivalent

to variational inequality problem (0.2).

In 1994, Blum E. and Oettli W. introduced equilibrium problem and showed

sufficient conditions on the existence of its solutions: Let X be a real topo-

logical locally convex Hausdorff, D ⊆ X,ϕ : D ×D → R. Find x̄ ∈ D such

that

ϕ(t, x̄) ≥ 0 for all t ∈ D. (0.5)

The typical instances of this problem are fixed point problem, variational

inequalities, Nash equilibrium problem,...

In 2002, Nguyen Xuan Tan and Guerraggio A. introduced quasi-optimization

problem and showed sufficient conditions on the existence of its solutions: Let

X,Z be topological locally convex Hausdorff, D ⊆ X,K ⊆ Z be nonempty
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subsets, S : D × K → 2D, T : D × K → 2K be multivalued mappings,

F : K ×D ×D → R be a function. Find (x̄, ȳ) ∈ D ×K such that

1) x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ),

2) F (ȳ, x̄, x̄) = min
t∈S(x,y)

F (ȳ, x̄, t). (0.6)

Problem (0.6) is more generalized than (0.5). In case F is independent in

y, F (x, x) = 0 for all x ∈ D, we are setting S(x, y) ≡ D and ϕ(t, x) =

F (x, t) for all x, t ∈ D. From the fact that (0.6) implies 0 = F (x̄, x̄) ≤
F (x̄, t) for all t ∈ D, that means ϕ(t, x̄) ≥ 0 for all t ∈ D, (0.5) is satisfied.

Problem (0.1) has been extended for vectors: Let X, Y be a real topological

locally convex Hausdorff spaces,D ⊆ X , C ⊆ Y be a cone. We consider patiel

order relation in Y is generated by cone C: x � y iff x − y ∈ C. We define

the set of α effective points in A ⊆ Y , denoted by αMin(A/C), called α

effective points set of the set A to C, (α is ideal, proper, Pareto and weak).

The problem: Find x̄ ∈ D such that

F (x̄) ∈ αMin(F (D)/C), (0.7)

with F : D → Y , is called quasi- optimization α vector problems. x̄ and F (x̄)

are called optimal solution and optimal value α of (0.7), respectively.

In 1985, Nguyen Xuan Tan extended the problem (0.2) for valued mappings

and constraints domain D dependent in S: Let D ⊆ X be a subset of vector

topological convex locally Hausdorff space X with duality space X∗, S : D →
2D, P : D → 2X

∗
be multivalued mappings and ϕ : D → R be a function.

The problem: Find x̄ ∈ D, x̄ ∈ S(x̄) and ȳ ∈ P (x̄) such that

〈y, x− x〉 + ϕ(x)− ϕ(x) ≥ 0 for all x ∈ S(x), (0.8)

is called quasivariational multivalued inequality.

In 1998, Nguyen Xuan Tan v  Phan Nhat Tinh extended the problem (0.3)

for vectors. Next, in 2000, Nguyen Xuan Tan and Nguyen Ba Minh extended

for multivalued mappings and they proved a theorem on the existence of so-

lutions to Blum-Oettli problem.

In 2007, Lin J. L. and Nguyen Xuan Tan stated quasivariational inclusion

problems of type 1. In 2004, Dinh The Luc and Nguyen Xuan Tan stated qua-

sivariational inclusion problems of type 2. Then, Bui The Hung and Nguyen
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Xuan Tan proved Theorems on the existence of solutions to Pareto quasivari-

ational inclusion problems of type 1 and type 2 (2012). These results implie

many results for related problems.

Following Truong Thi Thuy Duong and Nguyen Xuan Tan's studies on

generalized quasi-equilibrium problem of type 1, in 2011, we stated generalized

quasi-equilibrium problem of type 2:

Find x̄ ∈ D such that x̄ ∈ P1(x̄) and

0 ∈ F (y, x̄, t) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

The above problems contain quasivariational inclusion, quasi-equilibrium and

quasivariational relation problems of type 1 and type 2 like specific cases.

Truong Thi Thuy Duong's dissertation obtained the existence of solutions

to mixed generalized quasi-equilibrium problem: Find (x̄, ȳ) ∈ D × K such

that
1) x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ),

2) 0 ∈ F (ȳ, ȳ, x̄, t) for all t ∈ S(x̄, ȳ),

3) 0 ∈ G(y, x̄, t) for all t ∈ P (x̄), y ∈ Q(x̄, t),

where X, Y1, Y2, Z be vector topological convex locally Hausdorff spaces, F :

K × K × D × D → 2Y , G : K × D × D → 2Y and P,Q, S, T be the

same as above mappings. Truong Thi Thuy Duong gives strictly hypotheses

(such as hypothese iv) in Theorem 4.2.2). The objectves of dissertation were

to state and prove the existence of solutions to generalized quasi-equilibrium

problem of type 2, find relations to other multivalued optimal problems, study

mixed Pareto quasivariational inclusion problems with hypotheses easy to test

and find new implicit iteration methods for finding a solution to variational

inequality problems.

Chapter 1 introduces some basic knowledge on multivalued analysis which

used in Dissertation's main chapter.

Chapter 2 is for generalized quasi-equilibrium problem: generalized quasi-

equilibrium problem of type 2 (Theorem 2.3.1), quasivariational relation prob-

lem (Corolary 2.4.1), undirected quasi-equilibrium problem (Corollary 2.4.2),

ideal quasivariational inclusions (Corollaries 2.4.3 and 2.4.4), ideal quasi-equilibrium

problems (Corollaries 2.4.5 and 2.4.6). In special case, we show some results

on the existence of solutions to upper (lower) Pareto (weak) quasi-equilibrium

problems of type 1 and type 2 related to monotone mappings (see Theorems

2.4.2, 2.4.3, 2.4.4, 2.4.5).
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Chapter 3 shows the existence of solutions to mixed Pareto quasivariational

inclusion problems (Theorems 3.2.1, 3.2.2, 3.2.3 and 3.2.4) and the existence

of solutions to related problems, such as: systems of Pareto quasi-variational

inclusion problems, Pareto quasi optimization problems, mixed Pareto quasi-

equilibrium problems.

In Chapter 4, we present some implicit iteration methods to find solutions

of variational inequalities (see Theorems 4.2.1, 4.2.2, 4.2.3).
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Chapter 1. SOME BASIC KNOWLEDGE

Chapter 1 shows real topological locally convex Hausdorff spaces, some

definitions, some properties of cones and set-valued mappings.

Chapter 2. GENERALIZED QUASI-EQUILIBRIUM PROB-

LEMS

In this chapter, Section 2.1, we introduce generalized quasi-equilibrium

problems related to multivalued mappings. In Ssection 2.2, we consider the

existence of solutions to these problems. Sections 2.2 and 2.4 show that vec-

tor multivalued optimization problems, variational inclusion problems, quasi-

equilibrium problems of type 1 and type 2,... are quasi-equilibrium problems.

Section 2.5 obtains some results of the stability of the solutions to generalized

quasi-equilibrium problems which are dependent on parameters.

2.1. Introduction to problems

Throughout this chapter, X,Z and Y are supposed to be real topological

locally convex Hausdorff spaces,D ⊂ X,K ⊂ Z are nonempty subsets. Given

multivaled mappings S : D ×K → 2D, T : D ×K → 2K ;P1 : D → 2D, P2 :

D → 2D, Q : K×D → 2K and F1 : K×D×D×D → 2Y , F : K×D×D →
2Y , we are interested in the following problems:

1/ Find (x̄, ȳ) ∈ D ×K such that

i) x̄ ∈ S(x̄, ȳ),

ii) ȳ ∈ T (x̄, ȳ),

iii) 0 ∈ F1(ȳ, x̄, x̄, z), for all z ∈ S(x̄, ȳ).

This problem is called a generalized quasi-equilibrium problem of type 1.

2/ Find x̄ ∈ D such that

1) x̄ ∈ P1(x̄),

2) 0 ∈ F (y, x̄, t), for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

This problem is called a generalized quasi-equilibrium problem of type 2.

3/ Find (x̄, ȳ) ∈ D ×K such that
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1) x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ),

2) 0 ∈ F1(ȳ, x̄, x̄, z) for all z ∈ S(x̄, ȳ),

3) 0 ∈ F (y, x̄, t) for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

In the above problems, the multivalued mappings S, T, P1, P2 and Q are con-

straints, F1 and F are utility multivalued mappings that are often determined

by equalities and inequalities, or by inclusions, not inclusions and intersections

of other multivalued mappings, or by some relations in product spaces. The

generalized quasi-equilibrium problems of type 1 are studied by Truong Thi

Thuy Duong (2011). In this chapter, we consider the existence to solutions of

the second ones. The typical examples of generalized quasi-equilibrium prob-

lems of type 2 are the following:

2.2. The problems related to generalized quasi-equilibrium prob-

lems

This section shows typical examples of generalized quasi-equilibrium prob-

lems of type 2, such as: undirected quasi-equilibrium problem, Minty qua-

sivariational problem, ideal quasivariational inclusion problems, ideal quasi-

equilibrium problems, quasivariational relation problem, differential inclusion,

optimal control, Nash quasi-equilibrium problem in noncoorperation games,...

2.3. The sufficient conditions on the existence of solutions to

generalized quasi-equilibrium problems type 2

In this section, we apply Theorem Fan-Browder to prove the existence of the

solutions to generalized quasi-equilibrium problems type 2, there by deduces

some results to the relatedproblems.

Theorem 2.3.1. The following conditions are sufficient for (GEP )II to

have a solution:

i) D is a nonempty convex compact subset;

ii) P1 : D → 2D is a multivalued mapping with a nonempty closed fixed

point set D0 = {x ∈ D| x ∈ P1(x)} in D;

iii) P2 : D → 2D is a multivalued mapping with P−12 (x) open and the

convex hull coP2(x) of P2(x) is contained in P1(x) for each x ∈ D;
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iv) For any fixed t ∈ D, the set

B = {x ∈ D| 0 /∈ F (y, x, t), for some y ∈ Q(x, t)}

is open in D;

v) F : K ×D ×D → 2Y is a Q−KKM multivalued mapping.

Theorem 2.3.2 shows that if we replace the opennees of P−12 (x) with the

lower semicontinuity of P2, generalized quasi-equilibrium problems of type 2

have solutions.

2.4. The sufficient conditions on the existence of solutions to

interest problems

Several applications of the above theorem in the solution existence of quasi-

equilibrium, variational inclusion problems,... can be shown in the following

corollaries.

2.4.1. The quasi-variational relation problem

Corollary 2.4.1 introduces another proof of �inh The Luc's result (2008).

Corollary 2.4.1.Let D,K, P1, P2 be as Theorem 2.3.1, Q(., t) be an upper

semicontinuous mapping for any t ∈ D, R be a relation linking y ∈ K, x ∈
D and t ∈ D. In addition, assume:

i) For any fixed t ∈ D the relation R(., ., t) linking elements y ∈ K, x ∈
D is closed;

ii) R is Q-KKM.

Then, there exists x̄ ∈ D such that x̄ ∈ P1(x̄) and

R(y, x̄, t) holds for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

2.4.2. Undirected quasi-equilibrium problems The below result was

directly proved by the Theorem 2.3.1 and it was also Nguyen Xuan Tan and

Dinh The Luc's results published in 2004.
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Corollary 2.4.2. Let D,K, P1, P2 be as in Theorem 2.3.1, Q(., t) be a

lower semicontinuous mapping for any t ∈ D. Let Φ : K×D×D → R be

a real diagonally (Q,R+)− quasiconvex-like in the third variable function

with Φ(y, x, x) = 0, for all y ∈ K, x ∈ D. In addition, assume that for any

fixed t ∈ D the function Φ(., ., t) : K ×D → R is upper semicontinuous.

Then, there exists x̄ ∈ D such that x̄ ∈ P1(x̄) and

Φ(y, x̄, t) ≥ 0 for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

In the next corollaries in the Sections 2.4.3 and 2.4.4, we suppose that C

be a closed convex cone in Y .

2.4.3. Ideal quasi-variational inclusions

Theorem 2.3.1 gives some results on the existence of the solutions to upper

(lower) ideal quasivariational inclusions. This result implies Dinh The Luc and

Nguyen Xuan Tan's results published in 2004.

Corollary 2.4.3.Let D,K, P1, P2 be as in Theorem 2.3.1 and Q : D ×
D → 2K be such that for any fixed t ∈ D, the multivalued mapping Q(., t) :

D → 2K be lower semicontinuous. Let G,H : K × D × D → 2Y be

multivalued mappings with compact values and G(y, x, x) ⊆ H(y, x, x)+C,

for any (y, x) ∈ K ×D. In addition, assume:

i) For any fixed t ∈ D, the multivalued mapping G(., ., t) : K ×D → 2Y

is lower (−C)−continuous and the multivalued mapping N : K×D →
2Y , defined by N(y, x) = H(y, x, x), is upper C− continuous;

ii) G is diagonally upper (Q,C)-quasiconvex-like in the third variable.

Then, there exists x̄ ∈ D such that x̄ ∈ P1(x̄) and

G(y, x̄, t) ⊆ H(y, x̄, x̄) + C, for all t ∈ P2(x̄) and y ∈ Q(x̄, t).

Similarly, we obtain results for lower quasivariational inclusions. Section

2.4.4 shows the results on the existence the solutions of ideal quasi-equilibrium

problems.
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2.4.5. Pareto and weakly quasi-equilibrium problems

This section shows the existence of soluions to Pareto (weak) quasi-equilibrium

problems (in both cases: the utility multivalued mappings be C-convex and

C�quasiconvex like). We need the following lemmas in the sequel.

Lemma 2.4.1.Let F : K ×D ×D → 2Y be a multivalued mappings with

nonempty valued, C : K ×D → 2Y be a cone multivalued mappings with

F (y, x, x) ⊆ (C(y, x)) for any x ∈ D, y ∈ K. In addition, assume that:

i) For any fixed x ∈ D, y ∈ K,F (y, ., x) : D → 2Y is upper C(y, .)-

hemicontinuity;

ii) For any fixed y ∈ K, F (y, ., .) is lower C(y, .)- strong pseudomono-

tone;

iii) For any fixed y ∈ K, F (y, ., .) is diagonally upper C(y, .)-convex (or,

diagonally upper C(y, .)-quasiconvex-like) in the second variable.

Then for any fixed t ∈ D, y ∈ K, the following are equivalent:

1) F (y, t, x) ∩ −(C(y, t)\{0}) = ∅ for all x ∈ D;

2) F (y, x, t) ∩ −C(y, x) 6= ∅ for all x ∈ D.

Lemmas 2.4.2, 2.4.3 and 2.4.4 are similarly stated.

2.4.5.1. Pareto and weakly quasi-equilibrium problems type 1

Let S : D ×K → 2D, T : D ×K → 2K and G : K × D × D → 2Y be

multivalued mapping with nonempty values, C be closed convex cones in Y .

The upper (lower) Pareto quasi-equilibrium problems and upper (lower) weak

quasi-equilibrium problems of type 1,respectively, are formed:

1. Find x̄, ȳ ∈ D ×K such that

x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ),

G(ȳ, x̄, z) 6⊆ −(C(ȳ, x̄) \ {0}) for all z ∈ S(x̄, ȳ);

2. Find x̄, ȳ ∈ D ×K such that

x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ),

G(ȳ, x̄, z) ∩ −(C(ȳ, x̄) \ {0}) = ∅ for all z ∈ S(x̄, ȳ);
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3. Find x̄, ȳ ∈ D ×K such that

x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ),

G(ȳ, x̄, z) 6⊆ −intC(ȳ, x̄) for all z ∈ S(x̄, ȳ);

4. Find x̄, ȳ ∈ D ×K such that

x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ),

G(ȳ, x̄, z) ∩ −intC(ȳ, x̄) = ∅ for all z ∈ S(x̄, ȳ).

Next, we present sufficient conditions for the existence of solutions to Pareto

and weak quasi-equilibrium problems of type 1.

Theorem 2.4.2.(Lower Pareto quasi-equilibrium problems of type 1). Let

D,K are nonempty compact convex subsets, G : K × D × D → 2Y be a

multivalued mappings with nonempty valued and G(y, x, x) ⊆ C for any

x ∈ D, y ∈ K satisfying the following conditions:

i) S is continuous mappings with nonempty convex closed valued, T is

lower semicontinuous mappings with nonempty convex closed valued;

ii) For any fixed (x, y) ∈ D ×K, G(y, ., x) : D → 2Y is upper ideal C�

hemicontinuous;

iii) For any fixed y ∈ K, G(y, ., .) is lower C-strong pseudomonotone;

iv) For any fixed (x, y) ∈ K, G(y, x, .) is upper C�convex (or, upper C�

quasiconvex-like);

v) G is upper C� continuous.

Then there exists x̄ ∈ D, ȳ ∈ K such that

x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ),

G(ȳ, x̄, z) ∩ (−C \ {0}) = ∅ for all z ∈ S(x̄, ȳ).

Similarly, we have the results on the existence of the solutions to the rest

problems (see Theorem 2.4.3, 2.4.4, 2.4.5).

2.4.5.2. Pareto and weakly quasi-equilibrium problems of type

2
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In this section, we consider the mapping G : D × D → 2Y and cone

mapping C : D → 2Y with nonempty values.

The upper (lower) Pareto quasi-equilibrium problems and upper (lower)

weak quasi-equilibrium problems of type 2, respectively, are formed:

1. Find x̄ ∈ D such that

x̄ ∈ P (x̄) and G(x̄, x) 6⊆ −(C(x̄) \ {0}), for all x ∈ P (x̄).

2. Find x̄ ∈ D such that

x̄ ∈ P (x̄) and G(x̄, x) ∩ −(C(x̄) \ {0}) = ∅, for all x ∈ P (x̄).

3. Find x̄ ∈ D such that

x̄ ∈ P (x̄) and G(x̄, x) 6⊆ −intC(x̄), for all x ∈ P (x̄).

4. Find x̄ ∈ D such that

x̄ ∈ P (x̄) and G(x̄, x) ∩ −intC(x̄) = ∅, for all x ∈ P (x̄).

Theorem 2.4.9. (Lower Pareto quasi-equilibrium problem type 2.) Let D ⊂
X be a nonempty convex compact, G : D × D → 2Y be a multivalued

mapping with nonempty values and C ⊆ Y be a cone with G(x, x) ⊆ C

vîi måi x ∈ D. Assume that:

i) For any fixed t ∈ D, G(., t) : D → 2Y is lower C-strong hemicontin-

uous;

ii) For any fixed x ∈ D, y ∈ K,

A = {t ∈ D|G(x, t) ∩ (−C) 6= ∅} is closed in D;

iii) G is lower C-strong pseudomonotone;

iv) G is diagonally upper C�convex (or, diagonally upper C�quasiconvex-

like) in the second variable.

Then there exists x̄ ∈ D such that x̄ ∈ P (x̄) and

G(x̄, t) ∩ (−C\{0}) = ∅ for all t ∈ P (x̄).
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The other results are shown in Theorem 2.4.7, 2.4.8, 2.4.9. In Corollaries 2.4.9,

2.4.10, 2.4.11, 2.4.12, we will apply the results of Section 3 on the generalized

vector variational inequality problems by replacing G with F : D×D → 2Y ,

F (x, t) = 〈G(x), θ(x, t)〉, (x, t) ∈ D ×D, where G : D → 2L(X,Y ).

Remark. If Y = R, C(x̄) ≡ R+ and G : D → X∗ is hemicontinuous and

monotone mapping, P (x) ≡ D, θ(x, t) = t−x, for all x, t ∈ D, then Corollary

2.4.9 becomes: There exists x̄ ∈ D such that

〈G(x̄), t− x̄〉 ≥ 0,

(it is equivalent to 〈G(t), x̄− t〉 ≥ 0), for all t ∈ D.
(2.9)

This is classic Stampacchia (Minty) variational inequality which we study in

Chapter 4.

2.5. The stability of the solutions to generalized quasi-equilibrium

problems

Let X,Z,D,K, Y, C be the same as in above sections. Let Λ,Γ,Σ be real

topological Hausdorff spaces, the multivalued mappings Pi : D×Λ→ 2D, i =

1, 2, Q : D×D×Γ→ 2K and F : K×D×D×Σ→ 2Y .We get a generalized

quasi-equilibrium problems dependent on parameters: Find x̄ ∈ P1(x̄, λ) such

that 0 ∈ F (y, x̄, t, µ) for all t ∈ P2(x̄, λ), y ∈ Q(x̄, t, γ).

For any λ ∈ Λ, µ ∈ Γ, γ ∈ Σ, we set E(λ) = {x ∈ P1(x, λ)}; M(λ, γ, µ) =

{x ∈ D | x ∈ E(λ) and 0 ∈ F (y, x, t, µ) for all t ∈ P1(x, λ), y ∈ Q(x, t, γ)}.
Section 2.3 obtains the sufficient conditions forM(λ, γ, µ) 6= ∅. Next, we show
the sufficient conditions for the solution mappings characterized by stability:

upper semicontinuity, lower semicontinuity to (λ, γ, µ).

Theorem 2.5.1.Let (λ0, γ0, µ0) ∈ Λ× Γ× Σ. Suppose that:

i) P1 is an upper semicontinuous with compact valued mapping; P2 is

an lower semicontinuous mapping;

ii) Q is a lower semicontinuous with compact valued mapping;

iii) The set A = {(y, x, λ, γ, µ) | x ∈ E(λ), 0 ∈ F (y, x, t, γ) vîi måi t ∈
P2(x, λ), y ∈ Q(x, t, µ)} is closed.

Then M is upper semicontinuous and closed at (λ0, γ0, µ0).

Theorem 2.5.2.The mapping M be lower semicontinuous at (λ0, γ0, µ0)

if we have:
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i) E is lower semicontinuous at λ0;

ii) Q is upper semicontinuous with compact values;

iii) P2 is a closed mapping;

iv) The set A = {(y, x, t, λ, γ, µ) ∈ D × D × D × Λ × Γ × Σ | x ∈
P1(x, λ), 0 /∈ F (y, x, t, λ, γ, µ), t ∈ P2(x, λ), y ∈ Q(x, t, µ)} is closed.

SUMMARY OF CHAPTER 2

In this chapter, we prove the existence of the solutions to quasi-

equilibrium generalized problems of type 2 and related problems, such as: undi-

rected quasi-equilibrium problems, quasi-variational inclusions, quasi-variational

related problems, Pareto and weak quasi-equilibrium problems (Sections 2.3,

2.4). Section 2.5 obtains the stability of the solutions to generalized quasi-

equilibrium problems of type 2. These results were published in [3].
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Chapter 3. MIXED PARETO QUASI-VARIATIONAL INCLU-

SION PROBLEMS

3.1. Introduction to problems

Throughout this chapter, except for special cases, we denote byX, Y, Y1, Y2, Z

real locally convex Hausdorff topological vector spaces. Assume that D ⊂
X,K ⊂ Z are nonempty subsets. and Ci ⊆ Yi, i = 1, 2, are convex closed

cones. 2A denotes the collection of all subsets in the set A. Given multivalued

mappings S : D×K → 2D, T : D×K → 2K ;P : D → 2D, Q : K×D → 2K

and F1 : K×K×D → 2Y1F2 : K×D×D → 2Y2, we consider the following

problems:

1. Mixed upper-upper Pareto quasi-variational inclusion prob-

lem:

Find (x̄, ȳ) ∈ D ×K such that

x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ);

F1(ȳ, v, x̄) 6⊆ F1(ȳ, ȳ, x̄)− (C1 \ {0}), for all v ∈ T (x̄, ȳ);

F2(y, x̄, t) 6⊆ F2(y, x̄, x̄)− (C2 \ {0}), for all t ∈ P (x̄), y ∈ Q(x̄, t).

2. Mixed upper-lower Pareto quasi-variational inclusion prob-

lem:

Find (x̄, ȳ) ∈ D ×K such that

x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ);

F1(ȳ, v, x̄) 6⊆ (F1(ȳ, ȳ, x̄)− (C1 \ {0})), for all v ∈ T (x̄, ȳ);

F2(y, x̄, x̄) 6⊆ F2(y, x̄, t) + (C2 \ {0})), for all t ∈ P (x̄), y ∈ Q(x̄, t).

3. Mixed lower - upper Pareto quasi-variational inclusion prob-

lem:

Find (x̄, ȳ) ∈ D ×K such that

x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ);

F1(ȳ, ȳ, x̄) 6⊆ F1(ȳ, v, x̄) + (C1 \ {0})), for all v ∈ T (x̄, ȳ);

F2(y, x̄, t) 6⊆ (F2(y, x̄, x̄)− (C2 \ {0})), for all t ∈ P (x̄), y ∈ Q(x̄, t).

4. Mixed lower-lower Pareto quasi-variational inclusion problem:
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Find (x̄, ȳ) ∈ D ×K such that

x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ);

F1(ȳ, ȳ, x̄) 6⊆ F1(ȳ, v, x̄) + (C1 \ {0})), for all v ∈ T (x̄, ȳ);

F2(y, x̄, x̄) 6⊆ F2(y, x̄, t) + (C2 \ {0})), for all t ∈ P (x̄), y ∈ Q(x̄, t).

These problems have emerged as a powerful tool for wide class of quasi-

equilibrium, quasi- variational, quasi-optimization problems. There are few

papers considering the mixed problems as above. But mostly these papers

pay attention to one of type 1 and type 2 only. The purpose of this chap-

ter is to study the existence of solutions to the mixed Pareto quasi-variational

inclusion problems. Many problems in the vector optimization theory concern-

ing multivalued mappings like quasi-equilibrium, quasi-variational inclusion,

quasi-variational relation problems can be reduced to the form of these prob-

lems. Balaj and Luc also considered the mixed variational relations problems.

But, their problem has no constraint multivalued mapping S. The solution set

of this problem is found on whole set D. Our approach to prove the existence

of solutions to these problems is unlike their methods. They used the finite

intersection property of the mappings family which have KKM property with

respect to a set-valued mapping, we use a lemma on empty intersection of two

multivalued mappings to prove the existence of solutions to above mentioned

problems.

3.2. Existence of solutions

Given multivalued mappings S, T, P,Q and Fi, i = 1, 2 with nonempty

values as in Introduction section, we first prove the following theorem for

the existence of solutions of the mixed upper-upper Pareto quasi-variational

inclusion problem.

3.2.1. Upper-upper mixed Pareto quasi-variational inclusion prob-

lems

Theorem 3.2.1.We assume that the following conditions hold:

(i) D,K are nonempty convex compact subsets;

(ii) S is a multivalued with nonempty convex values and has open lower

sections and T is a continuous multivalued mapping with nonempty
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closed convex values and the subset A = {(x, y) ∈ D × K|(x, y) ∈
S(x, y)× T (x, y)} is closed;

(iii) P has open lower sections and P (x) ⊆ S(x, y) for (x, y) ∈ A. For

any fixed t ∈ D, the multivalued mapping Q(., t) : D → 2K is lower

semi-continuous with compact values;

(iv) The multivalued mapping F1 is a upper (−C1)− continuous and lower

C1− continuous mapping with nonempty weak compact values. For

any fixed t ∈ D the multivalued mapping F2(., ., t) : K ×D → 2Y2 is

a upper (−C2)- continuous multivalued mapping with nonempty weak

compact values and for any fixed y ∈ K, the multivalued mapping N2 :

K×D → 2Y2 defined by N2(y, x) = F2(y, x, x) is lower C2−continuous
;

(v) For any fixed (x, y) ∈ D × K, the multivalued mapping F1(y, ., x) :

K → 2Y1 is lower C1− convex ( or, lower C1−quasi-convex-like) and
any y ∈ K the multivalued mapping F2(y, ., .) : D × D → 2Y2 is di-

agonally lower C2-convex in the second variable (or, diagonally lower

C2-quasi-convex-like in the second variable).

Then there exists (x̄, ȳ) ∈ D ×K such that

x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ);

F1(ȳ, v, x̄) 6⊆ (F1(ȳ, ȳ, x̄)− (C1 \ {0})), for all v ∈ T (x̄, ȳ);

F2(y, x̄, t) 6⊆ (F2(y, x̄, x̄)− (C2 \ {0})), for all t ∈ P (x̄), y ∈ Q(x̄, t).

3.2.2. Upper-lower mixed Pareto quasi-variational inclusion prob-

lems

Theorem 3.2.1.We assume that the following conditions hold:

(i) D,K are nonempty convex compact subsets;

(ii) S is a multivalued mapping with nonempty convex values and has

open lower sections and T is a continuous multivalued mapping with

nonempty closed convex values and the subset A = {(x, y) ∈ D ×
K|(x, y) ∈ S(x, y)× T (x, y)} is closed;
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(iii) P has open lower sections and P (x) ⊆ S(x, y) for (x, y) ∈ A. For

any fixed t ∈ D, the multivalued mapping Q(., t) : D → 2K is lower

semi-continuous with compact values;

(iv) The multivalued mapping F1 is a upper (−C1)− continuous and lower

C1− continuous mapping with nonempty weak compact values. For

any fixed t ∈ D the multivalued mapping F2(., ., t) : K ×D → 2Y2 is a

lower (−C2)- continuous mapping with nonempty weak compact values

and for any fixed y ∈ Y , the multivalued mapping N2 : K ×D → 2Y2

defined by N2(y, x) = F2(y, x, x) is upper C2−continuous;

(v) For any fixed (x, y) ∈ D × K, the multivalued mapping F1(y, ., x) :

K → 2Y1 is lower C1− convex ( or, lower C1−quasi-convex-like) and
any y ∈ K the multivalued mapping F2(y, ., .) : D ×D → 2Y2 is diag-

onally upper C2-convex in the second variable (or, diagonally upper

C2-quasi-convex-like in the second variable).

Then there exists (x̄, ȳ) ∈ D ×K such that

x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ);

F1(ȳ, v, x̄) 6⊆ (F1(ȳ, ȳ, x̄)− (C1 \ {0})), for all v ∈ T (x̄, ȳ);

F2(y, x̄, x̄) 6⊆ F2(y, x̄, t) + (C2 \ {0})), for all t ∈ P (x̄), y ∈ Q(x̄, t).

3.2.3. Lower-upper mixed Pareto quasi-variational inclusion prob-

lems

Theorem 3.2.3.We assume that the following conditions hold:

(i) D,K are nonempty convex compact subsets;

(ii) S is a multivalued with nonempty convex values and has open lower

sections and T is a continuous multivalued mapping with nonempty

closed convex values and the subset A = {(x, y) ∈ D × K|(x, y) ∈
S(x, y)× T (x, y)} is closed;

(iii) P has open lower sections and P (x) ⊆ S(x, y) for (x, y) ∈ A. For

any fixed t ∈ D, the multivalued mapping Q(., t) : D → 2K is lower

semi-continuous with compact values;
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(iv) The multivalued mapping F1 is a upper C1− continuous and lower

(−C1)− continuous mapping with nonempty weak compact values. For

any fixed t ∈ D the multivalued mapping F2(., ., t) : K × D → 2Y2

is a upper (−C2)- continuous mapping with nonempty weak compact

values and for any fixed y ∈ Y , the multivalued mapping N2 : K ×
D → 2Y2 defined by N2(y, x) = F2(y, x, x) is lower C2−continuous;

(v) For any fixed (x, y) ∈ D × K, the multivalued mapping F1(y, ., x) :

K → 2Y1 is upper C1− convex ( or, upper C1−quasi-convex-like) and
any y ∈ K the multivalued mapping F2(y, ., .) : D × D → 2Y2 is di-

agonally lower C2-convex in the second variable (or, diagonally lower

C-quasi-convex-like in the second variable).

Then there exists (x̄, ȳ) ∈ D ×K such that

x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ);

F1(ȳ, ȳ, x̄) 6⊆ F1(ȳ, v, x̄) + (C1 \ {0})), for all v ∈ T (x̄, ȳ);

F2(y, x̄, t) 6⊆ (F2(y, x̄, x̄)− (C2 \ {0})), for all t ∈ P (x̄), y ∈ Q(x̄, t).

3.2.4. Lower-lower mixed Pareto quasi-variational inclusion prob-

lems

Theorem 3.2.3.We assume that the following conditions hold:

(i) D,K are nonempty convex compact subsets;

(ii) S is a multivalued with nonempty convex values and has open lower

sections and T is a continuous multivalued mapping with nonempty

closed convex values and the subset A = {(x, y) ∈ D × K|(x, y) ∈
S(x, y)× T (x, y)} is closed;

(iii) P has open lower sections and P (x) ⊆ S(x, y) for (x, y) ∈ A. For

any fixed t ∈ D, the multivalued mapping Q(., t) : D → 2K is lower

semi-continuous with compact values;

(iv) The multivalued mapping F1 is a upper C1− continuous and lower

(−C1)− continuousmapping with nonempty weak compact values. For

any fixed t ∈ D the multivalued mapping F2(., ., t) : K ×D → 2Y2 is a

lower (−C2)- continuous mapping with nonempty weak compact values
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and for any fixed y ∈ Y , the multivalued mapping N2 : K ×D → 2Y2

defined by N2(y, x) = F2(y, x, x) is upper C2−continuous ;

(v) For any fixed (x, y) ∈ D × K, the multivalued mapping F1(y, ., x) :

K → 2Y1 is upper C1− convex ( or, upper C1−quasi-convex-like) and
any y ∈ K the multivalued mapping F2(y, ., .) : D ×D → 2Y2 is diag-

onally upper C2-convex in the second variable (or, diagonally upper

C-quasi-convex-like in the second variable).

Then there exists (x̄, ȳ) ∈ D ×K such that

x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ);

F1(ȳ, ȳ, x̄) 6⊆ F1(ȳ, v, x̄) + (C1 \ {0})), for all v ∈ T (x̄, ȳ);

F2(y, x̄, x̄) 6⊆ F2(y, x̄, t) + (C2 \ {0})), for all t ∈ P (x̄), y ∈ Q(x̄, t).

We assume that all the hypotheses of Theorem 3.3.1�3.3.4 are satisfied

except for (i) and (iii) (respectively) replaced by

(i') S is a lower semi-continuous multivalued mapping with nonempty convex

values;

(iii') P is lower semi-continuous and P (x) ⊆ S(x, y) for all x ∈ S(x, y), y ∈
T (x, y) and the subset A = {(x, y) ∈ D×K|(x, y) ∈ S(x, y)×T (x, y)}
is closed.

Then the conclusions of these theorems are also true.

3.3. Some problems concern to mixed Pareto quasivariational

inclusion problems

Given multivalued mappings S, T and Fi, i = 1, 2 with nonempty values as

in Introduction, Section 3.3, we are interested in the related problems: systems

of quasi-variational inclusion problems of types 1 and 2.

1. System of two upper Pareto quasi-variational inclusion problems of

type 1. Find (x̄, ȳ) ∈ D ×K such that
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x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ);

F1(ȳ, v, x̄) 6⊆ F1(ȳ, ȳ, x̄)− (C1 \ {0}), for all v ∈ T (x̄, ȳ);

F2(ȳ, x̄, t) 6⊆ F2(ȳ, x̄, x̄)− (C2 \ {0}), for all t ∈ S(x̄, ȳ).

2. System of upper and lower quasi-variational inclusion problems of

type 1. Find (x̄, ȳ) ∈ D ×K such that

x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ);

F1(ȳ, v, x̄) 6⊆ F1(ȳ, ȳ, x̄)− (C1 \ {0}), for all v ∈ T (x̄, ȳ);

(F2(ȳ, x̄, x̄) 6⊆ F2(ȳ, x̄, t) + (C2 \ {0}), for all t ∈ S(x̄, ȳ).

3. System of two lower quasi-variational inclusion problems of type 1.

Find (x̄, ȳ) ∈ D ×K such that

x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ);

F1(ȳ, ȳ, x̄) 6⊆ F1(ȳ, v, x̄) + (C1 \ {0}), for all v ∈ T (x̄, ȳ);

F2(ȳ, x̄, x̄) 6⊆ F2(ȳ, x̄, t) + (C2 \ {0}), for all t ∈ S(x̄, ȳ).

Theorems 3.3.4, 3.3.5 consider mixed Pareto quasi-equilibrium problems by

adding F1(y, y, x) ⊆ C1 and F2(y, x, x) ⊆ C2 for all (x, y) ∈ D ×K.

SUMMARY OF CHAPTER 3

In Chapter 3, we introduce mixed Pareto quasi-variational inclusion

problems and show some sufficient conditions on the existence of their solu-

tions. As special cases, we obtain several results for different mixed Pareto

quasi-equilibrium problems, mixed Pareto quasi- optimization problems and

also mixed weak quasi-variational inclusion problems etc.

Chapter 4. IMPLICIT ITERATION METHODS FOR FIND-

ING SOLUTIONS TO VARIATIONAL INEQUALITIES

4.1.Introduction to problems

Variational inequalities were initially studied by Stampacchia and from

then on have been widely investigated, they have covered as diverse disciplines
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like partial differential equations, optimal control, optimization, mathematical

programming, mechanics, and finance. In this chaper, we introduce a new

implicit iteration method for finding a solution for a variational inequality

involving Lipschitz continuous and strongly monotone mapping over the set

of common fixed points of a finite family of nonexpansive mappings on Hilbert

spaces. The problem is formulated as finding a point x ∈ D such that

〈G(x), x− x〉 ≥ 0,∀x ∈ D,
D =

n
∩
i=1

Fix(Ti),
(4.1)

where N ∈ N, Ti : X → X, i = 1, 2, ..., N, are nonexpansive mappings. It is

the problem: finding solutions of variational inequalities on interrelationship

of the fixed point sets of nonexpansive mappings Ti, i = 1, 2, ..., N. We define

the mappings P1, P2 : D → D,

P1(x) = {t ∈ D : 〈Ti(x)− t, x− y〉 ≥ 0, for all i = 1, 2, ..., n, y ∈ D},

P2(x) = {t ∈ D : 〈Ti(x)− t, x− y〉 > 0, for all i = 1, 2, ..., n, y ∈ D}
and F (y, x, t) = 〈G(x), y − t〉 − R+, y, x, t ∈ D. Set K = D,Q(x, t) = D,

we consider generalized quasi-equilibrium problem of type 2: T¼m x̄ ∈ D, x̄ ∈
P1(x̄), 0 ∈ F (y, x̄, t), for all t ∈ P2(x̄), y ∈ Q(x̄, t). If x̄ is a solution of

generalized quasi-equilibrium type 2 problem, then we get x̄ ∈ P1(x̄). That

means

〈Ti(x̄)− x̄, x̄− y〉 ≥ 0, for all y ∈ D, i = 1, 2, ..., n.

Let y = Ti(x̄), i = 1, 2, ..., n, it follows that 〈Ti(x̄) − x̄, x̄ − Ti(x̄)〉 ≥ 0, or ‖
Ti(x̄)−x̄ ‖≤ 0. We have Ti(x̄) = x̄, i = 1, 2, ..., n. With 0 ∈ F (y, x̄, t), for all

t ∈ P2(x̄), y ∈ Q(x̄, t), we have 〈G(x̄), y − x̄〉 ≥ 0, for all y ∈ D. So, x̄ is a

solution of variational inequality problem (4.1).

In contrast, if x̄ is a solution of variational inequality on interrelationship

of the fixed point sets of nonexpansive mappings Ti, i = 1, 2, ..., N, then x̄ is

a solution of generalized quasi-equilibrium of type 2.

Theorems 4.1.1, 4.1.2 introduce the implicit iteration process for finding an

element p ∈ ∩Ni=1Fix(Ti) (Xu H.K. -Ori R.G., 2001 and Zheng L.C. - Yao

J.C., 2006). These results are weak convergence. Clearly, from
∑∞

k=1 λk <∞
we have that λk → 0 as k → ∞. In Section 4.2, we propose the implicit

iteration algorithms which converges strongly to the solution of (4.1) without

the condition
∑∞

k=1 λk <∞.
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4.2. An implicit iteration methods on the set of common fixed

points for a finite family of nonexpansive mappings in Hilbert

spaces.

Let X be a Hilbert space, the mapping G : X → X , the parameters

µ ∈ (0, 2η/L2) and t ∈ (0, 1), {λt}, {βi
t} ⊂ (0, 1), such that

λt → 0, if t→ 0 and

0 < lim inf
t→0

βi
t ≤ lim sup

t→0
βi
t < 1, 2, i = 1, 2, · · ·, N. (4.5)

The net {xt} defined by

xt = T txt, T t := T t
0T

t
N ...T

t
1, t ∈ (0, 1), (4.6)

where T t
i : X → X ,

T t
i x = (1− βi

t)x + βi
tTix, i = 1, 2, · · ·, N,

T t
0y = (I − λtµG)y, x, y ∈ X.

(4.7)

Theorem 4.2.1.Let X be a real Hilbert space and G : X → X be a

mapping such that for some constants L, η > 0, F is L-Lipschitz con-

tinuous and η-strongly monotone. Let {Ti}Ni=1 be N nonexpansive self-

maps of X such that D = ∩Ni=1Fix(Ti) 6= ∅. Let µ ∈ (0, 2η/L2) and let

t ∈ (0, 1), {λt}, {βi
t} ⊂ (0, 1), such that

λt → 0, as t→ 0 and 0 < lim inf
t→0

βi
t ≤ lim sup

t→0
βi
t < 1, i = 1, 2, · · ·, N.

Then, the net {xt} defined by (4.5)-(4.7) converges strongly to the unique

element x̄ in (4.2) (with D = X).

Next, let αi ∈ [γi, 1) be fixed real, {Si}Ni=1 be N mappings γi-strictly

pseudocontractive in X . Theorem 4.2.2 extend our result to the case D =

∩Ni=1Fix(Si).

Theorem 4.2.2.Let X be a real Hilbert space and G : X → X be a map-

ping such that for some constants L, η > 0, G is L-Lipschitz continuous

and η-strongly monotone. Let {Si}Ni=1 be N γi-strictly pseudocontractive

self-maps of X such that D = ∩Ni=1Fix(Si) 6= ∅. Let αi ∈ [γi, 1), µ ∈
(0, 2η/L2) and let t ∈ (0, 1), {λt}, {βi

t} ⊂ (0, 1), such that

λt → 0, as t→ 0 and 0 < lim inf
t→0

βi
t ≤ lim sup

t→0
βi
t < 1, i = 1, · · ·, N.
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Cho αi ∈ [γi, 1), µ ∈ (0, 2η/L2) v  cho t ∈ (0, 1), {λt}, {βi
t} ⊂ (0, 1), nh÷

trong �ành lþ 4.2.1. Then, the net {xt} defined by

xt = T̃ txt, T̃ t := T t
0T̃

t
N ...T̃

t
1, t ∈ (0, 1),

where T̃ t
i , for i = 1, 2, · · ·, N , are defined by

xt = T̃ txt, T̃ t := T t
0T̃

t
N ...T̃

t
1, t ∈ (0, 1),

and T t
0x = (I − λtµG)x, converges strongly to the unique element x̄ in

(4.2).

Furthermore, we are interested in variational inequality problems on the

common fixed set of infinite family of nonexpansive mappings in Banach

spaces. That result are published in [5].

SUMMARY OF CHAPTER 4

In this chapter, Section 4.2, we introduce a new implicit iteration method

for finding a solution for a variational inequality involving Lipschitz continu-

ous and strongly monotone mapping over the set of common fixed points for a

finite family of nonexpansive mappings on Hilbert spaces. Beside, for finding

solutions of variational inequality problems in Banach spaces, we show mod-

ified viscosity approximation methods with weak contraction mapping for an

infinite family of nonexpansive mappings. The results are published in [2] and

[5].
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Summary of dissertation

and open issues

Summary of dissertation

1) The generalized quasi-equilibrium problem of type 2 is formulated.

2) Some sufficient conditions on the existence solutions of quasi-equilibrium

problem of type 2 are shown.

3) In special cases, the dissertation shows several results on the existence of

solutions to another problems in the vector optimization theory concern-

ing multivalued mappings.

4) The dissertation introduces mixed Pareto quasi-variational inclusion prob-

lems and show some sufficient conditions on the existence of their solu-

tions.

5) The dissertation introduces a new implicit iteration method for finding a

solution for a variational inequality.

The open issues

1) Study about the application of the results in economic problems.

2) Continue to study the upper (lower) semicontinuity and Holder of the

solutions of the general quasi-equilibrium problems.

3) Search for algorithms solving general quasi-equilibrium problems in a few

special cases.

4) Study the problems in the case that collectives D, K are not compact,

only convex and closed.




