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Introduction

Fixed point theory has many applications in variety of mathematical

branches. Many problems arising in different areas of mathematics reduce

to the problem of finding fixed points of a certain mapping such as integral

equations, differential equations, or the problem of existence of variational

inequalities, equilibrium problems, optimization and approximation theory.

These theory is the basic for the development of fixed points of contraction

mapping in finite dimensional spaces to many other classes of mappings,

for instance Lipschitzian mappings, pseudocontractive mappings in Hilbert

spaces and Banach spaces.

Theory of fixed point problems, including existence and methods for ap-

proximation of fixed points, has been considered by many well-known math-

ematicians such as Brower E., Banach S., Bauschke H. H., Moudafi A., Xu

H. K., Schauder J., Browder F. E., Ky Fan K., Kirk W. A., Nguyen Buong,

Phm Ky Anh, Le Dung Muu, etc . . . . Recently, problem of finding common

fixed points of nonexpansive mappings and nonexpansive semigroups hosts

a lots of research works in the field of nonlinear analysis with many publica-

tions of Vietnamese authors. For instance, Pham Ky Anh, Cao Van Chung

(2014) ”Parallel Hybrid Methods for a Finite Family of Relatively Nonex-

pansive Mappings”, Numerical Functional Analysis and Optimization.,

35, pp. 649-664; P. N. Anh (2012) ”Strong convergence theorems for non-

expansive mappings and Ky Fan inequalities”, J. Optim. Theory Appl.,

154, pp. 303-320; P. N. Anh, L. D. Muu (2014) ”A hybrid subgradient

algorithm for nonexpansive mappings and equilibrium problems”, Optim.

Lett., 8, pp. 727-738; Nguyen Thi Thu Thuy: (2013) ”A new hybrid

method for variational inequality and fixed point problems”, Vietnam. J.

Math., 41, pp. 353-366, (2014) ”Hybrid Mann-Halpern iteration methods

for finding fixed points involving asymptotically nonexpansive mappings

and semigroups”, Vietnam. J. Math., Volume 42, Issue 2, pp. 219-232,

”An iterative method for equilibrium, variational inequality, and fixed point

problems for a nonexpansive semigroup in Hilbert spaces”, Bull. Malays.

Math. Sci. Soc.,Volume 38, Issue 1, pp. 113-130, (2015) ”A strongly

strongly convergent shrinking descent-like Halpern’s method for monotone

variational inequaliy and fixed point problems”, Acta. Math. Vietnam.,

Volume 39, Issue 3, pp. 379-391; Nguyen Thi Thu Thuy, Pham Thanh Hieu
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(2013) ”Implicit Iteration Methods for Variational Inequalities in Banach

Spaces”, Bull. Malays. Math. Sci. Soc., (2) 36(4), pp. 917-926; Duong

Viet Thong: (2011), ”An implicit iteration process for nonexpansive semi-

groups”, Nonlinear Anal., 74, pp. 6116-6120, (2012) ”The comparison of

the convergence speed between picard, Mann, Ishikawa and two-step iter-

ations in Banach spaces”, Acta. Math. Vietnam., Volume 37, Number

2, pp. 243-249, ”Viscosity approximation method for Lipschitzian pseudo-

contraction semigroups in Banach spaces”, Vietnam. J. Math., 40:4, pp.

515-525, etc. . . .

It is worth mentioning some well-known types of iterative procedures, Kras-

nosel’skii iteration, Mann iteration, Halpern iteration, and Ishikawa one,

etc. . . . These algorithms have been studied extensively and are still the

focus of a host of research works.

Let C be a nonempty closed convex subset in a real Hilbert space H

and let T : C → H be a nonexpansive mapping. Nakajo and Takahashi

introduced the hybrid Mann’s iteration method

x0 ∈ C any element,

yn = αnxn + (1− αn)T (xn),

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn

(x0), n ≥ 0,

(0.1)

where {αn} ⊂ [0, a] for some a ∈ [0, 1). They showed that {xn} defined

by (0.1) converges strongly to PF (T )(x0) as n→∞.

Moudafi A. proposed a viscosity approximation methodx0 ∈ C any element,

xn =
1

1 + λn
T (xn) +

λn
1 + λn

f (xn), n ≥ 0,
(0.2)

and x0 ∈ C any element,

xn+1 =
1

1 + λn
T (xn) +

λn
1 + λn

f (xn), n ≥ 0,
(0.3)

f : C → C be a contraction with a coefficient α̃ ∈ [0, 1).

Alber Y. I. introduced a hybrid descent-like method

xn+1 = PC(xn − µn[xn − Txn]), n ≥ 0, (0.5)
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and proved that if {µn} : µn > 0, µn → 0, as n→∞ and {xn} is bounded.

Nakajo and Takahashi also introduced an iteration procedure as follows:

x0 ∈ C any element,

yn = αnxn + (1− αn) 1
tn

∫ tn
0 T (s)xnds,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − x0, z − xn〉 ≥ 0},
xn+1 = PCn∩Qn

(x0), n ≥ 0,

(0.6)

where {αn} ∈ [0,a] for some a ∈ [0,1) and {tn} is a positive real number

divergent sequence. Further, in 2008, Takahashi, Takeuchi and Kubota

proposed a simple variant of (0.6) that has the following form:
x0 ∈ H, C1 = C, x1 = PC1

x0,

yn = αnxn + (1− αn)Tnxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1

x0, n ≥ 1.

(0.7)

They showed that if 0 ≤ αn ≤ a < 1, 0 < λn < ∞ for all n ≥ 1 and

λn →∞, then {xn} converges strongly to u0 = PFx0. At the time, Saejung

considered the following analogue without Bochner integral:
x0 ∈ H, C1 = C, x1 = PC1

x0,

yn = αnxn + (1− αn)T (tn)xn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1

x0, n ≥ 0,

(0.8)

where 0 ≤ αn ≤ a < 1, lim infn tn = 0, lim supn tn > 0, and limn(tn+1 −
tn) = 0 and they proved that {xn} converges strongly to u0 = PFx0.

Recently, Nguyen Buong, introduced a new approach in order to replace

closed and convex subsets Cn and Qn by half spaces. Inspired by Nguyen

Buong’s idea, in this dissertation we propose some modification to approxi-

mate fixed points of nonexpansive mapppings and nonexpansive semigroups

in Hilbert spaces.
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Chapter 1

Preliminaries

1.1. Approximative Methods For Fixed Points of Nonex-

pansive Mappings

1.1.1. On Some Properties of Hilbert Spaces

Definition 1.1 Let H be a real Hilbert space. A sequence {xn} is called

strong convergence to an element x ∈ H , denoted by xn → x, if

||xn − x|| → 0 as n→∞.

Definition 1.2 A sequence {xn} is called weak convergence to an element

x ∈ H , denoted by xn ⇀ x, if 〈xn, y〉 → 〈x, y〉 as n→∞ vi mi y ∈ H .

1.1.2. Methods For Approximation of Fixed Points of Nonex-

pansive Mappings

Statement of problem: Let C be a nonempty, closed and convex subset

in a Hilbert space H, T : C → C be a nonexpansive mapping. Find

x∗ ∈ C : T (x∗) = x∗.

Mann Iteration

In 1953, Mann W. R. introduced the following iteration{
x0 ∈ C any element,

xn+1 = αnxn + (1− αn)Txn, n ≥ 0,
(1.1)

and proved that, if {αn} is chosen such that
∑∞

n=1 αn(1− αn) =∞, then

{xn} defined by (1.1) weakly convergent to a fixed point of mapping T .
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Halpern Iteration

In 1967, Halpern B. considered the following method:{
x0 ∈ C any element,

xn+1 = αnu + (1− αn)Txn, n ≥ 0
(1.2)

where u ∈ C and {αn} ⊂ (0, 1) and proved that sequence (1.2) is strong

convergent to a fixed point of nonexpansive mapping T with condition

αn = n−α, α ∈ (0, 1).

Ishikawa Iteration

In 1974, Ishikawa S. introduced a new iterative method as follows.
x1 ∈ C,
yn = βnxn + (1− βn)T (xn),

xn+1 = αnxn + (1− αn)T (yn), n ≥ 0,

(1.3)

where {αn} and {βn} are sequences of real numbers belonging in interval

[0, 1].

Vicosity Approximation

Moudafi A. (2000) ”Viscosity approximation methods for fixed-point

problems”, J. Math. Anal. Appl., 241, pp. 46-55., proposed a new

method for finding common fixed points of nonexpansive mapppings in

Hilbert spaces called viscosity approximation method and proved the fol-

lowing result.

Theorem 1.2 Let C be a nonempty closed convex subset of a Hilbert

space H and let T be a nonexpansive self-mapping of C such that

F (T ) 6= ∅. Let f be a contraction of C with a constant α̃ ∈ [0, 1) and

let {xn} be a sequence generated by: x1 ∈ C and

xn =
λn

1 + λn
f (xn) +

1

1 + λn
Txn, n ≥ 1, (1.4)

xn+1 =
λn

1 + λn
f (xn) +

1

1 + λn
Txn, n ≥ 1, (1.5)

where {λn} ⊂ (0, 1) satisfies the following conditions:

(L1) lim
n→∞

λn = 0;

(L2)
∞∑
n=1

λn =∞;
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(L3) lim
n→∞

∣∣∣ 1
λn+1
− 1

λn

∣∣∣ = 0.

Then, {xn} defined by (1.5) converges strongly to p∗ ∈ F (T ), where

p∗ = PF (T )f (p∗) and {xn} defined by (1.4) converges to p∗ only under

condition (L1).

Hybrid Steepest Descent Method

Alber Ya. I. proposed the following descent-like method

xn+1 = PC(xn − µn[xn − Txn]), n ≥ 0, (1.6)

and proved that: if {µn} : µn → 0, as n→∞ and {xn} is bounded, then:

(a) there exists a weak accumulation point x̃ ∈ C of {xn};
(b) all weak accumulation points of {xn} belong to F (T ); and

(c) if F (T ) is a singleton, then {xn} converges weakly to x̃.

1.2. Nonexpansive Semigroups And Some Approximative

Methods For Finding Fixed Points of Nonexpansive

Semigroups

In 2010, Nguyen Buong (2010) ”Strong convergence theorem for nonex-

pansive semigroups in Hilbert space”, Nonlinear Anal., 72(12), pp. 4534-

4540, introduced a result as a improvement of some results of Nakajo K.,

Takahashi W. and Saejung S. stating in the following theorem.

Theorem 1.5 Let C be a nonempty, closed and convex subset of a

Hilbert space H and let {T (t) : t ≥ 0} be a nonexpansive semigroup on

C with F = ∩t≥0F (T (t)) 6= ∅. Define a sequence {xn} by

x0 ∈ H any element,

yn = αnxn + (1− αn)TnPC(xn),

αn ∈ (a, b], 0 < a < b < 1,

Hn = {z ∈ H : ‖z − yn‖ ≤ ‖z − xn‖},
Wn = {z ∈ H : 〈z − xn, x0 − xn〉 ≤ 0},
xn+1 = PHn∩Wn

(x0),

(1.9)

If lim infn→∞ tn = 0; lim supn→∞ tn > 0; limn→∞(tn+1 − tn) = 0, then

sequence {xn} defined (1.9) is strongly convergent to z0 = PF(x0).
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Chapter 2

Approximative Methods For Fixed

Points of Nonexpansive Mappings

2.1. Modified Viscosity Approximation

We propose some new modifications of (0.2) that are the implicit algo-

rithm

xn = T nxn, T
n := T n1 T

n
0 and T n := T n0 T

n
1 , n ∈ (0, 1), (2.1)

where T ni are defined by

T n0 = (1− λnµ)I + λnµf,

T n1 = (1− βn)I + βnT,
(2.2)

where f is a contraction with a constant α̃ ∈ [0, 1), µ ∈ (0, 2(1− α̃)/(1 +

α̃)2) and the parameters {λn} ⊂ (0, 1) and {βn} ⊂ (α, β) for all n ∈ (0, 1)

and some α, β ∈ (0, 1) satisfying the following condition: λn → 0 as n→ 0.

Theorem 2.1 Let C be a nonempty closed convex subset of a real

Hilbert space H and f : C → C be a contraction with a coefficient

α̃ ∈ [0, 1). Let T be a nonexpansive self-mapping of C such that F (T ) 6=
∅. Let µ ∈ (0, 2(1 − α̃)/(1 + α̃)2). Then, the net {xn} defined by

(2.1), (2.2) converges strongly to the unique element p∗ ∈ F (T ) in

〈(I − f )(p∗), p∗ − p〉 ≤ 0, ∀p ∈ F (T ).

Next, we give two improvements of explicit method (0.3) in the form as

follows 
x1 ∈ C any element,

yn = (1− λnµ)xn + λnµf (xn),

xn+1 = (1− γn)xn + γnTyn, n ≥ 1,

(2.8)
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where {λn} ⊂ (0, 1), {γn} ⊂ (α, β), vi α, β ∈ (0, 1) and
x1 ∈ C any element,

yn = (1− βn)xn + βnTxn,

xn+1 = (1− γn)xn + γn[(1− λnµ)yn + λnµf (yn)],

(2.9)

where {βn} ⊂ (α, β).

Theorem 2.2 Let C be a nonempty closed convex subset of a real

Hilbert space H, f : C → C be a contraction with a coefficient α̃ ∈
[0, 1) and let T be a nonexpansive self-mapping of C such that F (T ) 6=
∅. Assume that µ ∈ (0, 2(1 − α̃)/(1 + α̃)2), {λk} ⊂ (0, 1) satisfying

conditions (L1) limn→∞ λn = 0 and (L2)
∑∞

n=1 λn = ∞ and {γn} ⊂
(α, β) for some α, β ∈ (0, 1). Then, the sequence {xk} defined by (2.8)

converges strongly to the unique element p∗ ∈ F (T ) in 〈(I−f )(p∗), p∗−
p〉 ≤ 0, ∀p ∈ F (T ). The same reult is guaranteed for {xn} defined by

(2.9), if in addition, {βn} ⊂ (α, β) satisfies the following condition:

|βn+1 − βn| → 0 as n→∞.

2.2. Modified Mann-Halpern Method

We proposed new methods in the following form:

x0 ∈ H any element,

zn = αnPC(xn) + (1− αn)PCTPC(xn),

yn = βnx0 + (1− βn)PCTzn,

Hn = {z ∈ H : ‖yn − z‖2 ≤ ‖xn − z‖2

+βn(‖x0‖2 + 2〈xn − x0, z〉)},
Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PHn∩Wn

(x0), n ≥ 0.

(2.13)

We have the following theorem:

Theorem 2.3 Let C be a nonempty closed convex subset in a real

Hilbert space H and let T : C → H be a nonexpansive mapping such

that F (T ) 6= ∅. Assume that {αn} and {βn} are sequences in [0,1] such

that αn → 1 and βn → 0. Then, the sequences {xn}, {yn} and {zn}
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defined by (2.13) converge strongly to the same point u0 = PF (T )(x0),

as n→∞.

Corolary 2.1 Let C be a nonempty closed convex subset in a real

Hilbert space H and let T : C → H be a nonexpansive mapping such

that F (T ) 6= ∅. Assume that {βn} is a sequence in [0,1] such that such

that βn → 0. Then, the sequences {xn} and {yn}, defined by

x0 ∈ H any element,

yn = βnx0 + (1− βn)PCTPC(xn),

Hn = {z ∈ H : ‖yn − z‖2 ≤ ‖xn − z‖2

+βn(‖x0‖2 + 2〈xn − x0, z〉)},
Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PHn∩Wn

(x0), n ≥ 0,

converge strongly to the same point u0 = PF (T )(x0), as n→∞.

Corolary 2.2 Let C be a nonempty closed convex subset in a real

Hilbert space H and let T : C → H be a nonexpansive mapping such

that F (T ) 6= ∅. Assume that {αn} is a sequence in [0,1] such that

αn → 1. Then, the sequences {xn} and {yn}, defined by

x0 ∈ H any element,

yn = PCT (αnPC(xn) + (1− αn)PCTPC(xn)),

Hn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖},
Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PHn∩Wn

(x0), n ≥ 0,

converge strongly to the same point u0 = PF (T )(x0), as n→∞.

2.3. Hybrid Steepest Descent Methods

Sequence {xn} is defined by
x0 ∈ H = H0,

yn = xn − µn(I − TPC)(xn),

Hn+1 = {z ∈ Hn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PHn+1

(x0), n ≥ 0.

(2.21)
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We have the following result:

Theorem 2.4 Let C be a nonempty closed convex subset in a real

Hilbert space H and let T be a nonexpansive mapping on C such that

F (T ) 6= ∅. Assume that {µn} is a sequence in (a, 1) for some a ∈
(0, 1]. Then, the sequences {xn} and {yn}, defined by (2.21), converge

strongly to the same point u0 = PF (T )x0.

2.4. Common Fixed Points For Two Nonexpansive Map-

pings On Two Subsets

Let C1, C2, be two closed and convex subsets in H and T1 : C1 → C1,

T2 : C2 → C2 be two nonexpansive mapppings. Consider problem: Find

p ∈ F := F (T1) ∩ F (T2), (2.24)

with assumption that F is nonempty.

To solve problem (2.24) we propose the new method as follows:

x0 ∈ H any element,

zn = xn − µn(xn − T1PC1
(xn)),

yn = βnx0 + (1− βn)T2PC2
(zn),

Hn = {z ∈ H : ‖yn − z‖2 ≤ ‖xn − z‖2

+βn(‖x0‖2 + 2〈xn − x0, z〉)},
Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PHn∩Wn

(x0), n ≥ 0.

(2.25)

We have the following theorem:

Theorem 2.5 Let C1 and C2 be two nonempty, closed and convex

subsets in a real Hilbert space H and let T1 and T2 be two nonexpansive

mappings on C1 and C2, respectively, such that F := F (T1)∩F (T2) 6= ∅.
Assume that {µn} and {βn} are sequences in [0,1] such that µn ∈ (a, b)

for some a, b ∈ (0, 1) and βn → 0. Then, the sequences {xn}, {zn}
and {yn}, defined by (2.25), converge strongly to the same point u0 =

PF (x0), as n→∞.
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Corolary 2.3 Let Ci, i = 1, 2, be two nonempty, closed and convex

subsets in a real Hilbert space H. Let Ti, i = 1, 2, be two nonexpansive

mappings on Ci such that F (T1) ∩ F (T2) 6= ∅. Assume that {µn} is a

sequence such that 0 < a ≤ µn ≤ b < 1. Then, the sequences {xn} and

{yn}, defined by

x0 ∈ H any element,

yn = T2PC2
(xn − µn(xn − T1PC1

(xn))),

Hn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖},
Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PHn∩Wn

(x0), n ≥ 0,

converge strongly to the same point u0 = PF (T )(x0), as n→∞.

Corolary 2.4 Let Ci, i = 1, 2, be two nonempty, closed and convex

subsets in a real Hilbert space H such that C := C1 ∩C2 6= ∅. Assume

that {µn} and {βn} are sequences in [0,1] such that µn ∈ (a, b) for

some a, b ∈ (0, 1) and βn → 0. Then, the sequences {xn}, {zn} and

{yn}, defined by

x0 ∈ H any element,

zn = xn − µn(xn − PC1
(xn)),

yn = βnx0 + (1− βn)PC2
zn,

Hn = {z ∈ H : ‖yn − z‖2 ≤ ‖xn − z‖2

+βn(‖x0‖2 + 2〈xn − x0, z〉)},
Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PHn∩Wn

(x0), n ≥ 0,

converge strongly to the same point u0 = PC(x0), as n→∞.

2.5. Numerical Example

Example 2.1 Consider mapping T from L2[0, 1] into itself defined by

(T (x))(u) = 3

∫ 1

0

usx(s)ds + 3u− 2, (2.35)
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for all x ∈ L2[0, 1]. Hence, T is a nonexpansive mapping.

Let f is a mapping from L2[0, 1] into itself defined by

(f (x))(u) =
1

2
x(u), vi mi x ∈ L2[0, 1]. (2.36)

Then, f is a contraction with coefficient α̃ =
1

2
.

Clearly, variational inequality: Find p∗ ∈ F (T ) such that

〈p∗ − f (p∗), p− p∗〉 ≥ 0, ∀p ∈ F (T ), (2.37)

has a unique solution p∗ = 3u− 2.

From (2.1) we have

T t = T t1T
t
0 = T t1[(1−λtµ)I+λtµf ] = (1−βt)(1−

λtµ

2
)I+βtT ((1−λtµ

2
)I).

(2.38)

Choose βt = β = 10−4, µ =
2

5
, λt = λ = 10−4 and compute matrix

A = (1− (1− β)(1− λµ

2
))I − 3β(1− λµ

2
)B

and right hand side g = β(3uT−(2, 2, ..., 2)T ). Then, approximate solution

is computed by formula X = A−1g.

With exact solution p∗ = 3u− 2.

Computing results at the iteration 20 are showed in the following table:

Table 2.1

Iteration ui App Solution X(ui) Exact Solution p∗(ui)

u0 = 0.000000000000000 −1.666694444908047 −2.000000000000000

u1 = 0.050000000000000 −1.540906200737406 −1.850000000000000

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u20 = 1.000000000000000 0.849070438504779 1.000000000000000

Next, we give computing result for explicit method (2.8).

Choose µ =
2

5
, γk =

1

2
, λk =

1

k
, ∀k ≥ 1 and use (2.8) we have

Xk+1 = (1− γk)Xk + γk(1−
λkµ

2
)(3BXk + p).

Computing results at the iteration 20 are showed in the following table:
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Table 2.2

Iteration ui App Solution X(ui) Exact Solution p∗(ui)

u0 = 0.00000000000000 −1.999998092651367 −2.00000000000000

u1 = 0.05000000000000 −1.848447062448525 −1.85000000000000

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u20 = 1.000000000000000 1.031022511405487 1.000000000000000

With the same problem, we consider the explicit iterations (2.9). We

have yk = (1 − βk)xk + βkTxk then, we have approximate equation

Yk = (1− βk)Xk + βk(3BXk + p), where

Yk = (yk(u0), yk(u1), ..., yk(uM ))T , Xk = (xk(u0), xk(u1), ..., xk(uM ))T

and p = 3(u0, u1, ..., uM )− (2, 2, ..., 2).

Choose µ =
2

5
, βk = γk =

1

2
, λk =

1

k
for all k ≥ 1, by using (2.9) we have

Xk+1 = (1− γk)Xk + γk(1−
λkµ

2
)Yk.

Computing result at the 50th iteration is showed in the following table.

Table 2.3

Iteration ui App Solution X(ui) Exact Solution p∗(ui)

u0 = 0.00000000000000 −1.982945017736413 −2.00000000000000

u1 = 0.05000000000000 −1.832285258509282 −1.85000000000000

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u20 = 1.000000000000000 0.849070438504779 1.000000000000000

Example 2.2 In R2, let S1 and S2 be two circles defined by

S1 : (x− 2)2 + (y − 2)2 ≤ 1, S2 : (x− 4)2 + (y − 2)2 ≤ 4.

Consider the problem of finding x∗, such that x∗ ∈ S = S1 ∩ S2.

By the same argument, we choose αn = 1− 1

n + 1
, βn =

1

n
, x0 =

(9

4
, 0
)

and compute xn+1 = PHn∩Wn
(x0).

Computing results at the 1000th iteration is showed in the following

table.
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Figure 2.1

Table 2.4

Solution App Solution xn App Solution yn App Solution zn
x1 x2 x1n x2n y1n y2n z1n z2n

2.2500000 1.0317541 2.2332447 1.0319233 2.2396581 1.0343974 2.2332510 1.03192782

Example 2.3 In R2, let C1 and C2 be two subsets defined by

C1 = {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1},
C2 = {(x, y) ∈ R2 : 3x− 2y ≥ −1, x + 4y ≥ 2, 2x + y ≤ 4}.

Figure 2.2

The computation of super plane Hn, Wn and projection of x0 onto Hn, Wn

is established the same as in Example 2.2.

Choose x0 = (0, 0), βn =
1

n
, µn =

1

2
, compute xn+1 = PHn∩Wn

(x0).

Computing results at the 5000th iteration is showed in the following

table.
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Table 2.5

Solution xn yn zn
x1 x2 x1n x2n y1n y2n z1n z2n

0.1176470 0.4705882 0.1153171 0.4612687 0.1176235 0.4704941 0.1153169 0.4612678

Example 2.4 Consider the problem of finding a common point of two

circles as in Example 2.2, with the iteration {xn} defined by (2.21).

Choose x0 =
(9

4
, 0
)
, µn =

1

2
and compute

xn+1 = PHn+1
(x0) = PW0∩W1...∩Wn

(x0).

Then, to determine PHn+1
(x0), we can use the cyclic projection method in

the form

uk+1 = PWk mod n
(uk), u0 = x0, k ≥ 0,

or the following iterative method

uk+1 =

∑n
i=1 PWi

(uk)

n
, u0 = x0, k ≥ 0. (2.41)

Now we use the iterative method (2.41) to compute approximation of

PHn+1
(x0).

Computing results at the 200th iteration is showed in the following table.

Table 2.6

Solution xn yn
x1 x2 x1n x2n y1n y2n

2.2500000000 1.0317541634 2.2499871121 1.0317755681 2.2500564711 1.0317684570

Remark 2.1 Based on the computing results for the considered iteration

methods showed in these above tables, we can conclude that the larger

iteration is the closer exact solution of approximate one is.
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Chapter 3

Approximative Methods For Fixed

Points of Nonexpansive Semigroups

3.1. Common Fixed Points of Nonexpansive Semigroups

To find an element p ∈ F , based on Mann iteration, Halpern iteration

and hybrid steepest descent methods using in mathematical programming,

we propose a new iterative method as follows:

x0 ∈ H any element,

zn = αnPC(xn) + (1− αn) 1
tn

∫ tn
0 T (s)PC(xn)ds,

yn = βnx0 + (1− βn) 1
tn

∫ tn
0 T (s)znds,

Hn = {z ∈ H : ‖yn − z‖2 ≤ ‖xn − z‖2

+βn(‖x0‖2 + 2〈xn − x0, z〉)},
Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PHn∩Wn

(x0), n ≥ 0,

(3.1)

for a nonexpansive semigroup on C.

We will give strong convergence of the iterative sequences {xn}, {yn} and

{zn} defined by (3.1) to a common fixed point of nonexpansive semigroup

{T (t) : t ≥ 0} with some certain conditions imposed on parameters {αn},
{βn}, and {tn}.

Theorem 3.1 Let C be a nonempty closed convex subset in a real

Hilbert space H and let {T (t) : t ≥ 0} be a nonexpansive semigroup

on C such that F = ∩t≥0F (T (t)) 6= ∅. Assume that {αn} and {βn}
are sequences in [0,1] such that αn → 1 and βn → 0, and {tn} is a
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positive real divergent sequence. Then, the sequences {xn}, {zn} and

{yn}, defined by (3.1), converge strongly to the same point u0 = PF(x0),

as n→∞.

Corolary 3.1 Let C be a nonempty closed convex subset in a real

Hilbert space H and let {T (t) : t ≥ 0} be a nonexpansive semigroup on

C such that F = ∩t≥0F (T (t)) 6= ∅. Assume that {βn} is a sequence in

[0,1] such that βn → 0. Then, the sequences {xn} and {yn}, defined by

x0 ∈ H any element,

yn = βnx0 + (1− βn) 1
tn

∫ tn
0 T (s)PC(xn)ds,

Hn = {z ∈ H : ‖yn − z‖2 ≤ ‖xn − z‖2

+βn(‖x0‖2 + 2〈xn − x0, z〉)},
Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PHn∩Wn

(x0), n ≥ 0,

converge strongly to the same point u0 = PF(x0), as n→∞.

Corolary 3.2 Let C be a nonempty closed convex subset in a real

Hilbert space H and let {T (t) : t ≥ 0} be a nonexpansive semigroup on

C such that F = ∩t≥0F (T (t)) 6= ∅. Assume that {αn} is a sequence in

[0,1] such that αn → 1. Then, the sequences {xn} and {yn}, defined

by

x0 ∈ H any element,

yn = 1
tn

∫ tn
0 T (s)

[
αnPC(xn) + (1− αn) 1

tn

∫ tn
0 T (s)PC(xn)ds

]
ds,

Hn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖},
Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PHn∩Wn

(x0), n ≥ 0,

converge strongly to the same point u0 = PF(x0), as n→∞.

Next, we prgive an improvement of hybrid steepest descent method for

the problem of finding an element p ∈ F . To be specific, we consider the
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following method:
x0 ∈ H = H0,

yn = xn − µn(I − TnPC)(xn),

Hn+1 = {z ∈ Hn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PHn+1

(x0), n ≥ 0

(3.9)

and 
x0 ∈ H = H0,

yn = xn − µn(I − T (tn)PC(xn)),

Hn+1 = {z ∈ Hn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PHn+1

(x0), n ≥ 0.

(3.10)

The strong convergence of (3.9) is stated in the following theorem:

Theorem 3.2 Let C be a nonempty closed convex subset in a real

Hilbert space H and let {T (t) : t ≥ 0} be a nonexpansive semigroup on

C such that F = ∩t≥0F (T (t)) 6= ∅. Assume that {µn} is a sequence

in (a, 1] for some a ∈ (0, 1] and {λn} is a positive real number diver-

gent sequence. Then, the sequences {xn} and {yn} defined by (3.9),

converge strongly to the same point u0 = PF(x0).

Next, the strong convergence of method (3.10) is given in the following

theorem:

Theorem 3.3 Let C be a nonempty closed convex subset in a real

Hilbert space H and let {T (t) : t ≥ 0} be a nonexpansive semigroup on

C such that F = ∩t≥0F (T (t)) 6= ∅. Assume that {µn} is a sequence

in (a, 1] for some a ∈ (0, 1] and {tn} is a sequence of positive real

numbers satisfying the condition lim infn tn = 0, lim supn tn > 0, and

limn(tn+1 − tn) = 0. Then, the sequences {xn} and {yn} defined by

(3.10), converge strongly to the same point u0 = PF(x0).

3.2. Common Fixed Point of Two Nonexpansive Semigroups

Let C1, C2 be two closed and convex subsets in Hilbert space H and

{T1(t) : t ≥ 0}, {T2(t) : t ≥ 0} be two nonexpansive semigroups from
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C1, C2 into itself, respectively. The problem considered in this section is:

Finding

q ∈ F1,2 := F1 ∩ F2, (3.17)

when Fi = ∩t>0F (Ti(t)). (F1,F2 is nonempty).

Based on (3.17) we give a new iterative method

x0 ∈ H any element,

zn = xn − µn
(
xn − 1

tn

∫ tn
0 T1(s)PC1

(xn)ds

)
,

yn = βnx0 + (1− βn) 1
tn

∫ tn
0 T2(s)PC2

(zn)ds,

Hn = {z ∈ H : ‖yn − z‖2 ≤ ‖xn − z‖2

+βn(‖x0‖2 + 2〈xn − x0, z〉)},
Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PHn∩Wn

(x0), n ≥ 0,

(3.18)

and prove the strong convergence of sequences {xn}, {yn} and {zn} defined

by (3.18) to an element q = u0 ∈ F1,2.

Theorem 3.4 Let C1 and C2 be two nonempty closed convex subsets

in a real Hilbert space H and let {T1(t) : t ≥ 0} and {T2(t) : t ≥ 0}
be two nonexpansive semigroups on C1 and C2, respectively, such that

F = F1 ∩ F2 6= ∅ where Fi = ∩t>0F (Ti(t)), i = 1, 2. Assume that

{µn} and {βn} are sequences in [0,1] such that µn ∈ (a, b) for some

a, b ∈ (0, 1) and βn → 0 and {tn} is a positive real divergent sequence.

Then, the sequences {xn}, {zn} and {yn}, defined by (3.18), converge

strongly to the same point u0 = PF(x0), as n→∞.

Corolary 3.3 Let C be a nonempty closed convex subset in a real

Hilbert space H and let {T (t) : t ≥ 0} be a nonexpansive semigroup on

C such that F = ∩t≥0F (T (t)) 6= ∅. Assume that {βn} is a sequence in

[0,1] such that βn → 0. Then, the sequences {xn} and {yn}, defined by{
x0 ∈ H any element,

yn = βnx0 + (1− βn) 1
tn

∫ tn
0 T (s)PC(xn)ds,
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Hn = {z ∈ H : ‖yn − z‖2 ≤ ‖xn − z‖2

+βn(‖x0‖2 + 2〈xn − x0, z〉)},
Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PHn∩Wn

(x0), n ≥ 0,

converge strongly to the same point u0 = PF(x0), as n→∞.

Corolary 3.4 Let C be a nonempty closed convex subset in a real

Hilbert space H and let {T (t) : t > 0} be a nonexpansive semigroup on

C such that F = ∩t>0F (T (t)) 6= ∅. Assume that {αn} is a sequence in

[0,1] such that αn → 1. Then, the sequences {xn} and {yn}, defined

by 

x0 ∈ H any element,

yn = 1
tn

∫ tn
0 T (s)PC

(
xn − µn

[
xn − 1

tn

∫ tn
0 T (s)PCxnds

]
ds

)
,

Hn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖},
Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PHn∩Wn

(x0), n ≥ 0,

converge strongly to the same point u0 = PF(x0), as n→∞.

3.3. Numerical Example

Example 3.1 In R2, with t > 0, consider mappings T (t) : R2 → R2

defined by T (t)x =

(
cos(t) − sin(t)

sin(t) cos(t)

)(
x1
x2

)
, for all x = (x1, x2) ∈ R2.

Choose x0 = (−1, 1), αn = 1 − 1

n + 1
, βn =

1

n
, tn = nπ and com-

pute xn+1 = PHn∩Wn
(x0). The computation of hyper planes Hn, Wn and

projection of x0 onto Hn, Wn is the same as in Example 2.2.

Computing results at the 500th iteration is showed in the following table.

Table 3.1

Solution xn yn zn
x1 x2 x1n x2n y1n y2n z1n z2n
0 0 -0.031259 -0.031259 -0.014563 -0.014563 -0.031230 -0.031230
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Besides, the convergences of sequences {xn}, {yn} and {zn} to solution

(0, 0) are showed in the following figure.

Figure 3.1

Then we can compute yn = (1−µn)xn+µnTnPC(xn) and the computation

of Hn+1, Wn and PHn+1
(x0) is the same as in Example 2.4.

Choose x0 = (−1, 1), µn =
1

2
, tn = nπ.

Computing results at the 50th iteration is showed in the following table.

Table 3.2

Solution xn yn
x1 x2 x1n x2n y1n y2n
0 0 −0.735× 10−3 0.445× 10−3 0.461× 10−3 −0.239× 10−3

Computing results at the 50th iteration is also showed in figure as follows.

Figure 3.2
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Example 3.2 In this example, consider iterative method (3.18) for solv-

ing the problem of finding common fixed points of two nonexpansive semi-

groups {Tm(t)} defined by

(
cos(mt) − sin(mt)

sin(mt) cos(mt)

)
, m = 1, 2.

Choose x0 = (−1, 1), µn =
1

2
, βn =

1

n
, tn = nπ and compute

xn+1 = PHn∩Wn
(x0), where the computation of Hn, Wn and projection

of x0 onto Hn, Wn is the same as in Example 2.2.

Computing results at the 500th iteration is showed in the following table.

Table 3.3

Solution xn yn zn
x1 x2 x1n x2n y1n y2n z1n z2n
0 0 -0.036923 -0.037136 -0.008730 -0.008784 -0.027451 -0.027611

The strong convergence of the above method is also illustrated in the fol-

lowing figure.

Figure 3.3

Remark 3.1 From the tables of computing results for considered iterative

methods we can conclude that if the iteration is higher and higher then the

approximate solutions are closer to exact solution.
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Final conclusion and further recommendation

Thesis has mentioned the following issues.

1. Study an improvement of Moudafi’s result in order to obtain the

strong convergence of implicit and explicit methods with ”milder” condi-

tions imposed on parameters. We also combined Mann iteration method,

Halpern iteration, and hybrid steepest descent method in mathematical

programming for finding common fixed points of a nonexpansive mapping

on a closed and convex subset C or common fixed points of two nonexpan-

sive mappings on two closed and convex subsets with nonempty intersection

in Hilbert spaces H . The strong convergence of hybrid steepest descent

methods to common fixed point of a nonexpansive mapping is proved.

2. Consider combination of Mann iteration method, Halpern iteration,

and hybrid steepest descent method in mathematical programming for find-

ing common fixed points of nonexpansive semigroup on a closed and convex

subset C or common fixed points of two nonexpansive semigroups on two

closed and convex subsets with nonempty intersection in Hilbert spaces H .

We also studied the strong convergence of hybrid steepest descent method

for the problem of finding common fixed points of nonexpansive semigroups.

Recommend futher research

1. Use the results, obtained in our thesis, to solve more complicated

problems.

2. Extension of the results from Hilbert spaces to Banach spaces.
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